An Institute of NET-JRF, ITI-JAM, GATE, |EST, IIIR \& MSC Entrance in Physics \& Phyiscol Sciences

fiziks

 t!క! ${ }^{2}$
NET- Joint CSIR UGC Dramination June-2021 Physics

Follow us @

Download Physics by fiziks App Official Website : http://physicsbyfiziks.com

For Enquiry Call us :
@ 011-2686-5455, +91-9871145498
Email us : fiziks.physics@gmail.com

Head Office
Physics by fiziks
House No. 40-D, Ground Floor, Jia Sarai
Near IIT-Delhi, Hauz Khas, New Delhi-110016

NET- Joint CSIR UGC Examination June-2021

Examination Date 15-02-2022
TIME: 3 HOURS
MAXIMUM MARKS: 200

Instructions

This Test Paper contains seventy-five (20 Part 'A' + 25 Part 'B' +30 Part ' C ') Multiple Choice Questions (MCQs). You are required to answer a maximum of 15 in part ' A ', 20 in Part ' B ', and 20 in Part ' C '. If more than the required number of questions are answered then only the first $15,20,20$ questions in Parts ' A ', ' B ', and ' C ' respectively, will be taken up for evaluation. Each question in Part ' A ' carries two marks, Part ‘B' 3.5 marks and Part 'C' 5 marks respectively. The total marks allocated 30, 70, and 100 for Parts ' A ', ' B ' and ' C ' respectively. There will be a negative marking @25\% for each wrong answer. Below each question in Parts ' A ', ' B ' and ' C ' four alternatives or responses are given. Only one of these alternatives is the "CORRECT" option to the question. You have to find, for each question, the correct or best answer.

Part A

ANSWER ANY 15 QUESTIONS

Q1. The arithmetic and geometric means of two numbers are 65 and 25 , respectively. What are these two numbers?
(a) 110,20
(b) 115,15
(c) 120,10
(d) 125,5

Ans. 1: (d)
Q2. An intravenous fluid is given to a child of 7.5 kg , at the rate of $20 \mathrm{drop} / \mathrm{minute}$. The prescribed dose of the fluid is 40 ml per kg of body weight. If the volume of a drop is 0.05 ml , how many hours are needed to complete the dose?
(a) 2
(b) 3
(c) 4
(d) 5

Ans. 2: (d)
Q3. Shyam spent half of his money and was left with as many as he had rupees before, but with half as many rupees as he had paise before. Which of the following is a possible amount of money he is left with?
(a) 49 rupees and 98 paise
(b) 49 rupees and 99 paise
(c) 99 rupees and 99 paise
(d) 99 rupees and 98 paise

Ans. 3: (b)
Q4. How many integers in the set $\{1,2,3, \ldots . . ., 100\}$ have exactly 3 divisors?
(a) 4
(b) 12
(c) 5
(d) 9

Ans. 4: (a)
Q5. A spacecraft flies at a constant height R above a planet of radius R. At the instant the spacecraft is over the north-pole, the lowest latitude visible from the spacecraft is:
(a) 0° (Equator)
(b) $30^{\circ} \mathrm{N}$
(c) $45^{\circ} \mathrm{N}$
(d) $60^{\circ} \mathrm{N}$

Ans. 5: (b)
Q6. Identical balls are tightly arranged in the shape of an equilateral triangle with each side containing n balls. How many balls are there in the arrangement?
(a) $n^{2} / 2$
(b) $n(n+1) / 2$
(c) $n(n-1) / 2$
(d) $(n+1)^{2} / 2$

Ans. 6: (b)
Q7. A and B start from the same point in opposite directions along a circular track simultaneously. Speed of B is $2 / 3^{\text {rd }}$ that of A. How many times will A and B cross each other before meeting at the starting point?
(a) 2
(b) 3
(c) 5
(d) 4

Ans. 7: (d)

Q8. An experiment consists of tossing a coin 20 times. Such an experiment is performed 50 times. The number of heads and the number of tails in each experiment are noted. What is the correlation coefficient between the two?
(a) -1
(b) $-20 / 50$
(c) $20 / 50$
(d) 1

Ans. 8: (a)
Q9. The maximum area of a right-angled triangle inscribed in a circle of radius r is
(a) $2 r^{2}$
(b) $r^{2} / 2$
(c) $\sqrt{2} r^{2}$
(d) r^{2}

Ans. 9: (d)
Q10. Trade figures populations in appropriate units in a certain year are given for 7 countries.

If countries are ranked according to the difference in their per capita exports over import, the best and worst ranking countries are respectively.
(a) C and A
(b) A and E
(c) C and B
(d) A and F

Ans. 10: (a)
Q11. A cylindrical road roller having a diameter of 1.5 m moves at a speed of $3 \mathrm{~km} / \mathrm{h}$ while levelling a road. How much length of the road will be leveled in 45 minutes?
(a) 2.25 km
(b) $0.375 \pi \mathrm{~km}$
(c) $0.75 \pi \mathrm{~km}$
(d) 1.5 kn

Ans. 11: (a)
Q12. Which of these groups of numbers has the smallest mean?
Group A: 1, 2, 3, 4, 5, 6, 7, 8, 9
Group B: 1, 2, 3, 4, 6, 6, 7, 8, 9
Group C: 1, 2, 2, 4, 5, 6, 7, 8, 9
Group D: 1, 3, 3, 4,5,6, 7, 9, 9
(a) A
(b) B
(c) C
(d) D

Ans. 12: (c)

Q13. An appropriate diagram to represent the relations between the categories KEYBOARD,
HARDWARE, OPERATING SYSTEM and CPU is
(a)

(b)

(c)

(d)

Ans. 13: (c)

Q14. If we replace the mathematical operations in the expression $(11+4-2) \div 24 \times 6$ as given in the table:

Operation	+	-	\times	\div
Replaced by	-	\times	\div	+

Then is new value is
(a) $23 / 6$
(b) 1
(c) 18
(d) 7

Ans. 14: (d)
Q15. In a tournament with 8 teams, a win fetches 3 points and a draw, 1. After all teams have played three matches each, total number of points earned by all teams put together must lie between
(a) 24 and 36
(b) 24 and 32
(c) 12 and 24
(d) 32 and 48

Ans. 15: (a)
Q16. An inverted cone is filled with water at a constant rate. The volume of water inside the cone as a function of times is represented the curve

(a) A
(b) B
(c) C
(d) D

Ans. 16: (b)

Q17. At least two among three persons A, B and C are truthful. If A calls B a liar and if B calls C a liar, then which of the following is FALSE?
(a) A is truthful
(b) B is truthful
(c) C is truthful
(d) At least one is a liar

Ans. 17: (b)
Q18. A shopkeeper has a faulty pan balance with a zero offset. When an object is placed in the left plan it is balanced by a standard 100 g weight. When it is placed in the right pan it is balanced by a standard 80 g weight. What is the actual weight of the object?
(a) 90 g
(b) 88.88 g
(c) 95 g
(d) 85 g

Ans. 18: (a)
Q19. A cousin is a non-sibling with a common ancestor. If there is exactly one pair of siblings in a group of 5 persons then the maximum possible number of pairs of cousins in the group is
(a) 3
(b) 6
(c) 9
(d) 10

Ans. 19: (c)
Q20. Consider a solid cube of side 5 units. After painting, it is cut into cubes of 1 unit. Find the probability that a randomly chosen unit cube has only one side painted.
(a) $56 / 125$
(b) $36 / 125$
(c) $44 / 125$
(d) $54 / 125$

Ans. 20: (d)

Part B

ANSWER ANY 20 QUESTIONS

Q21. Which of the following two physical quantities cannot be measured simultaneously with arbitrary accuracy for the motion of a quantum particle in three dimensions?
(a) square of the radial position and z-component of angular momentum (r^{2} and L_{z})
(b) x - components of linear and angular momenta (p_{x} and L_{x})
(c) y-component of position and z-component of angular momentum (y and L_{x})
(d) squares of the magnitudes of the linear and angular momenta (p^{2} and L^{2})

Ans. 21: (c)
Q22. A particle in one dimension executes oscillatory motion in a potential $V(x)=A|x|$, where $A>0$ is a constant of appropriate dimension. If the time period T of its oscillation depends on the total energy E as E^{a}, then the value of a is
(a) $1 / 3$
(b) $1 / 2$
(c) $2 / 3$
(d) $3 / 4$

Ans. 22: (b)
Q23. The components of the electric field, in a region of space devoid of any change or current sources, are given to be $E_{i}=a_{i}+\sum_{j=1,2,3} b_{i j} x_{j}$, where a_{i} and $b_{i j}$ are constants independent of the coordinates. The number of independent components of the matrix $b_{i j}$ is
(a) 5
(b) 6
(c) 3
(d) 4

Ans. 23: (a)
Q24. A particle of mass $1 \mathrm{GeV} / \mathrm{c}^{2}$ and its antiparticle, both moving with the same speed v, produce new particle x of mass $10 \mathrm{GeV} / \mathrm{c}^{2}$ in a head on collision. The minimum value of v required for this process is closest to
(a) 0.83 c
(b) 0.93 c
(c) 0.98 c
(d) 0.88 c

Ans. 24: (c)
Q25. The position of a particle in one dimension changes in discrete steps. With each step it moves to the right, however, the length of the step is drawn from a uniform distribution from the interval $\left[\lambda-\frac{1}{2} w, \lambda+\frac{1}{2} w\right]$, where λ and w are positive constants. If X denotes the distance from the starting point after N steps, the standard deviation $\sqrt{\left\langle X^{2}\right\rangle-\langle X\rangle^{2}}$ for large values of N is
(a) $\frac{\lambda}{2} \times \sqrt{N}$
(b) $\frac{\lambda}{2} \times \sqrt{\frac{N}{3}}$
(c) $\frac{w}{2} \times \sqrt{N}$
(d) $\frac{w}{2} \times \sqrt{\frac{N}{3}}$

Ans. 25: (d)
Q26. The volume of the region common to the interiors of two infinitely long cylinders defined by $x^{2}+y^{2}=25$ and $x^{2}+4 z^{2}=25$ is best approximated by
(a) 225
(b) 333
(c) 423
(d) 625

Ans. 26: (b)
Q27. The door of an X-ray machine room is fitted with a sensor D (0 is open and 1 is closed). It is also equipped with three fire sensors F_{1}, F_{2} and F_{3} (each is 0 when disabled and 1 when enabled). The X-ray machine can operate only if the door is closed and at least 2 fire sensors are enabled. The logic circuit to ensure that the machine can be operated is
(a)

(b)

(c)

(d)

Ans. 27: (b)

Q28. In the LCR circuit shown below, the resistance $R=0.05 \Omega$, the inductance $L=1 \mathrm{H}$ and the capacitance $C=0.04 F$.

If the input $v_{\text {in }}$ is a square wave of angular frequency $1 \mathrm{rad} / \mathrm{s}$, the output $v_{\text {out }}$ is best approximated by a
(a) Square wave of angular frequency $1 \mathrm{rad} / \mathrm{s}$
(b) Sine wave of angular frequency $1 \mathrm{rad} / \mathrm{s}$
(c) Square wave of angular frequency $5 \mathrm{rad} / \mathrm{s}$
(d) Sine wave of angular frequency $5 \mathrm{rad} / \mathrm{s}$

Ans. 28: (d)
Q29. A monochromatic source emitting radiation with a certain frequency moves with a velocity v away from a stationary observer A. It is moving towards another observer B (also at rest) along a line joining the two. The frequencies of the radiation recorded by A and B are V_{A} and V_{B}, respectively. If the ratio $\frac{V_{B}}{V_{A}}=7$, then the value of v / c is
(a) $1 / 2$
(b) $1 / 4$
(c) $3 / 4$
(d) $\sqrt{3} / 2$

Ans. 29: (c)
Q30. A particle, thrown with a speed v from the earth's surface, attains a maximum height h (measured from the surface of the earth). If v is half the escape velocity and R denotes the radius of earth, then h / R is
(a) $2 / 3$
(b) $1 / 3$
(c) $1 / 4$
(d) $1 / 2$

Ans. 30: (b)
Q31. A particle of mass m is in a one dimensional infinite potential well of length L, extending from $x=0$ to $x=L$. When it is in the energy Eigen-state labelled by $n,(n=1,2,3, .$.$) the$ probability of finding in the interval $0 \leq x \leq L / 8$ is $1 / 8$. The minimum value of n for which this is possible is
(a) 4
(b) 2
(c) 6
(d) 8

Ans. 31: (a)

Physics by fiziks

Q32. In an experiment, the velocity of a non-relativistic neutron is determined by measuring the time ($\sim 50 \mathrm{~ns}$) it takes to travel from the source to the detector kept at a distance L. Assume that the error in the measurement of L is negligibly small. If we want to estimate the kinetic energy T of the neutron to within 5% accuracy, i.e., $|\delta T / T| \leq 0.05$, the maximum permissible error $|\delta T|$ in measuring the time of flight is nearest to
(a) 1.75 ns
(b) 0.75 ns
(c) 2.25 ns
(d) 1.25 ns

Ans. 32: (d)
Q33. The volume and temperature of a spherical cavity filled with black body radiation are V and 300 K , respectively. If it expands adiabatically to a volume $2 V$, its temperature will be closest to
(a) 150 K
(b) 300 K
(c) 250 K
(d) 240 K

Ans. 33: (d)
Q34. The ratio c_{p} / c_{v} of the specific heats at constant pressure and volume of a monatomic ideal gas in two dimensions is
(a) $3 / 2$
(b) 2
(c) $5 / 3$
(d) $5 / 2$

Ans. 34: (2)
Q35. The total number of phonon modes in a solid of volume V is $\int_{0}^{\omega_{D}} g(\omega) d \omega=3 N$, is the number of primitive cells, ω_{D} is the Debye frequency and density of photon modes is $g(\omega)=A V \omega^{2}$ (with $A>0$ a constant). If the density of the solid doubles in a phase transition, the Debye temperature θ_{D} will
(a) increase by a factor of $2^{2 / 3}$
(b) increase by a factor of $2^{1 / 3}$
(c) decrease by a factor of $2^{2 / 3}$
(d) decrease by a factor of $2^{1 / 3}$

Ans. 35: (b)
Q36. A discrete random variable X takes a value from the set $\{-1,0,1,2\}$ with the corresponding probabilities $p(X)=3 / 10,2 / 10,2 / 10$ and $3 / 10$, respectively. The probability distribution $q(Y)=(q(0), q(1), q(4))$ of the random variable $Y=X^{2}$ is
(a) $\left(\frac{1}{5}, \frac{3}{5}, \frac{1}{5}\right)$
(b) $\left(\frac{1}{5}, \frac{1}{2}, \frac{3}{10}\right)$
(c) $\left(\frac{2}{5}, \frac{2}{5}, \frac{1}{5}\right)$
(d)

$$
\left(\frac{3}{10}, \frac{3}{10}, \frac{2}{5}\right)
$$

Ans. 36: (b)

Q37. In an experiment to measure the charge to mass ratio e / m of the electron by Thomson's method, the values of the deflecting electric field and the accelerating potential are $6 \times 10^{6} \mathrm{~N} / \mathrm{C}$ (newton per coulomb) and 150 V , respectively. The magnitude of the magnetic field that leads to zero deflection of the electron beam is closest to
(a) 0.6 T
(b) 1.2 T
(c) 0.4 T
(d) $0.8 T$

Ans. 37: (d)
Q38. A two-state system evolves under the action of the Hamiltonian $H=E_{0}|A\rangle\langle A|+\left(E_{0}+\Delta\right)|B\rangle\langle B|$, where $|A\rangle$ and $|B\rangle$ are its two orthonormal states. These states transform to one another under parity, i.e. $P|A\rangle=|B\rangle$ and $P|B\rangle=|A\rangle$. If at time $t=0$ the system is in a state of definite parity $P=1$, the earliest time t at which the probability of finding the system in a state of parity $P=-1$ is one is
(a) $\frac{\pi \hbar}{2 \Delta}$
(b) $\frac{\pi \hbar}{\Delta}$
(c) $\frac{3 \pi \hbar}{2 \Delta}$
(d) $\frac{2 \pi \hbar}{\Delta}$

Ans. 38: (b)
Q39. A conducting wire in the shape of a circle lies on the (x, y)-plane with its centre at the origin. A bar magnet moves with a constant velocity towards the wire along the z-axis (as shown in the figure below).

We take $t=0$ to be the instant at which the midpoint of the magnet is at the centre of the wire loop and the induced current to be positive when it is counter-clockwise as viewed by the observer facing the loop and the incoming magnet. In these conventions, the best schematic representation of the induced current $I(t)$ as a function of t, is
(a)

(b)

(d)

Q40. The vector potential for an almost point like magnetic dipole located at the origin is $\vec{A}=\frac{\mu \sin \theta}{4 \pi r^{2}} \hat{\phi}$ where (r, θ, ϕ) denote the spherical polar coordinates and $\hat{\phi}$ is the unit vector along $\hat{\phi}$. A particle of mass m and charge q, moving in the equatorial plane of the dipole, starts at time $=t=0$ with an initial speed v_{0} and an impact parameter b. Its instantaneous speed at the point of closest approach is
(a) v_{0}
(b) $0 / 0$
(c) $v_{0}+\frac{\mu q}{4 \pi m b^{2}}$
(d) $\sqrt{v_{0}^{2}+\left(\frac{\mu q}{4 \pi m b^{2}}\right)^{2}}$

Ans. 40: (a)
Q41. The equation of motion of a one-dimensional forced harmonic oscillator in the presence of a dissipative force is described by $\frac{d^{2} x}{d t^{2}}+10 \frac{d x}{d t}+16 x=6 t e^{-8 t}+4 t^{2} e^{-2 t}$. The general form of the particular solution, in terms of constants A, B etc ., is
(a) $t\left(A t^{2}+B t+C\right) e^{-2 t}+(D t+E) e^{-8 t}$
(b) $\left(A t^{2}+B t+C\right) e^{-2 t}+(D t+E) e^{-8 t}$
(c) $t\left(A t^{2}+B t+C\right) e^{-2 t}+t(D t+E) e^{-8 t}$
(d) $\left(A t^{2}+B t+C\right) e^{-2 t}+t(D t+E) e^{-8 t}$

Ans. 41: (c)
Q42. The figures below depict three different wave functions of a particle confined to a one dimensional box $-1 \leq x \leq 1$

Physics by fiziks

The wave functions that correspond to the maximum expectation values $|\langle x\rangle|$ (absolute value of the mean position) and $\left\langle x^{2}\right\rangle$, respectively, are
(a) B and C
(b) B and A
(c) C and B
(d) A and B

Ans. 42: (a)
Q43. The Hamiltonian of a particle of mass m in one-dimension is $H=\frac{1}{2 m} p^{2}+\lambda|x|^{3}$, where $\lambda>0$ is a constant. If E_{1} and E_{2} respectively, denote the ground state energies of the particle for $\lambda=1$ and $\lambda=2$ (in appropriate units) the ratio E_{2} / E_{1} is best approximated by
(a) 1.260
(b) 1.414
(c) 1.516
(d) 1.320

Ans. 43: (d)
Q44. A generic 3×3 real matrix A has eigenvalues 0,1 and 6 , and I is the 3×3 identity matrix. The quantity/quantities that cannot be determined from this information is/are the
(a) eigenvalue of $(I+A)^{-1}$
(b) eigenvalue of $\left(I+A^{T} A\right)$
(c) determinant of $A^{T} A$
(d) rank of A

Ans. 44: (b)
Q45. The volume integral $I=\iiint_{V} \vec{A} \cdot(\vec{\nabla} \times \vec{A}) d^{3} x$, is over a region V bounded by a surface Σ (an infinitesimal area element being n̂ds, where \hat{n} is the outward unit normal). If it changes to $I+\Delta I$ when the vector \vec{A} is changed to $\vec{A}+\vec{\nabla} \Lambda$, then ΔI can be expressed as
(a) $\iiint_{V} \vec{\nabla} \cdot(\vec{\nabla} \Lambda \times \vec{A}) d^{3} x$
(b) $-\iiint_{V} \nabla^{2} \Lambda d^{3} x$
(c) $-\oiint_{\Sigma}(\vec{\nabla} \Lambda \times \vec{A}) \cdot \hat{n} d s$
(d) $\oiint_{\Sigma} \vec{\nabla} \Lambda . \hat{n} d s$

Ans. 45: (c)

Physics by fiziks

An Institute of NET-JRF, IIT-JAM, GATE, JEST, TIFR \& M.Sc Entrance in Physics \& Physical Sciences

Our Courses

Onfine Live Classes

Online Test Series

Visit Our Website: www.physicsbyfiziks.com
Download : Physics by fiziks App

Head Office
Physics by fiziks
House No. 40-D, Ground Floor, Jia Sarai
Near IIT-Delhi, Hauz Khas, New Delhi-110016

Part C

ANSWER ANY 20 QUESTIONS

Q46. The Newton-Raphson method is to be used to determine the reciprocal of the number $x=4$. If we start with the initial guess 0.20 then after the first iteration the reciprocal is
(a) 0.23
(b) 0.24
(c) 0.25
(d) 0.26

Ans. 46: (b)
Q47. A laser beam propagates from fiber 1 to fiber 2 in a cavity made up of two optical fibers (as shown in the figure). The loss factor of fiber $2 \mathrm{is} 10 \mathrm{~dB} / \mathrm{km}$.

$$
\text { Fiber } 1 \quad d=0 \quad \text { Fiber } 2
$$

If $E_{2}(d)$ denotes the magnitude of the electric field in fiber 2 at a distance d from the interface, the ratio $E_{2}(0) / E_{2}(d)$ for $d=10 \mathrm{~km}$, is
(a) 10^{2}
(b) 10^{3}
(c) 10^{5}
(d) 10^{7}

Ans. 47: (c)
Q48. The fulcrum of a simple pendulum (consisting of a particle of mass m attached to the support by a massless string of length ℓ) oscillates vertically as $\sin z(t)=a \sin \omega t$, where ω is a constant. The pendulum moves in a vertical plane and $\theta(t)$ denotes its angular position with respect to the z-axis

If $\ell \frac{d^{2} \theta}{d t^{2}}+\sin \theta(g-f(t))=0$ (where g is the acceleration due to gravity) describes the equation of motion of the mass, then $f(t)$ is
(a) $a \omega^{2} \cos \omega t$
(b) $a \omega^{2} \sin \omega t$
(c) $-a \omega^{2} \cos \omega t$
(d) $-a \omega^{2} \sin \omega t$

Ans. 48: NOT Given

Q49. The energies of a two-state quantum system are E_{0} and $E_{0}+\alpha \hbar$, (where $\alpha>0$ is a constant) and the corresponding normalized state vectors are $|0\rangle$ and $|1\rangle$, respectively. At time $t=0$, when the system is in the state $|0\rangle$, the potential is altered by a time independent term V such that $\langle 1| V|0\rangle=\hbar \alpha / 10$. The transition probability to the state $|1\rangle$ at times $t \ll 1 / \alpha$, is
(a) $\alpha^{2} t^{2} / 25$
(b) $\alpha^{2} t^{2} / 50$
(c) $\alpha^{2} t^{2} / 100$
(d) $\alpha^{2} t^{2} / 200$

Ans. 49: (c)
Q50. The nuclei of ${ }^{137}$ Cs decay by the emission of β-particles with a half-life of 30.08 years. The activity (in units of disintegrations per second or $B q$) of a 1 mg source of ${ }^{137} \mathrm{Cs}$, prepared on January 1, 1980, as measured on January 1, 2021 is closest to
(a) 1.79×10^{16}
(b) 1.79×10^{9}
(c) 1.24×10^{16}
(d) 1.24×10^{9}

Ans. 50: (d)
Q51. To measure the height h of a column of liquid helium in a container, a constant current I is sent through an NbTi wire of length l, as shown in the figure. The normal state resistance of the $N b T i$ wire is R.

If the superconducting transition temperature of NbTi is $\approx 10 \mathrm{~K}$, then the measured voltage $V(h)$ is best described by the expression
(a) $\operatorname{IR}\left(\frac{1}{2}-\frac{2 h}{l}\right)$
(b) $\operatorname{IR}\left(1-\frac{h}{l}\right)$
(c) $\operatorname{IR}\left(\frac{1}{2}-\frac{h}{l}\right)$
(d) $\operatorname{IR}\left(1-\frac{2 h}{l}\right)$

Ans. 51: (d)
Q52. Diffuse hydrogen gas within a galaxy may be assumed to follow a Maxwell distribution at temperature $10^{6} \mathrm{~K}$, while the temperature appropriate for the H gas in the inter-galactic space, following the same distribution, may be taken to be $10^{4} \mathrm{~K}$. The ratio of thermal broadening $\Delta v_{G} / \Delta v_{I G}$ of the Lyman- α line from the H-atoms within the galaxy to that from the intergalactic space is closest to
(a) 100
(b) $1 / 100$
(c) 10
(d) $1 / 10$

Ans. 52: (c)

Q53. The dispersion relation of a gas of non-interacting bosons in dimensions $E(k)=a k^{s}$ where a and s are positive constants, Bose-Einstein condensation will occur for all values of
(a) $d>s$
(b) $d+2>s>d-2$
(c) $s>2$ independent of d
(d) $d>2$ independent of s

Ans. 53: (a)
Q54. A perfectly conducting fluid of permittivity ε and permeability μ flows with a uniform velocity \vec{v} in the presence of time dependent electric and magnetic fields \vec{E} and \vec{B}, respectively, if there is a finite current density in the fluid, then
(a) $\vec{\nabla} \times(\vec{v} \times \vec{B})=\frac{\partial \vec{B}}{\partial t}$
(b) $\vec{\nabla} \times(\vec{v} \times \vec{B})=-\frac{\partial \vec{B}}{\partial t}$
(c) $\vec{\nabla} \times(\vec{v} \times \vec{B})=\sqrt{\varepsilon \mu} \frac{\partial \vec{E}}{\partial t}$
(d) $\vec{\nabla} \times(\vec{v} \times \vec{B})=-\sqrt{\varepsilon \mu} \frac{\partial \vec{E}}{\partial t}$

Ans. 54: (a)

Q55. The pressure of a gas in a vessel needs be maintained between 1.5 bar to 2.5 bar in an experiment. The vessel is fitted with a pressure transducer that generates 4 mA to 20 mA current for pressure in the range 1 bar to 5 bar. The current output of the transducer has a linear dependence on the pressure.

The reference voltages V_{1} and V_{2} in the comparators in the circuit (shown in figure above) suitable for the desired operating conditions are respectively
(a) $2 V$ and 10 V
(b) $2 V$ and $5 V$
(c) $3 V$ and 10 V
(d) $3 V$ and $5 V$

Ans. 55: (d)
Q56. The energy levels of a non-degenerate quantum system are $\epsilon_{n}=n E_{0}$, where E_{0} is a constant and $n=1,2,3, \ldots$. At a temperature T, the free energy F can be expressed in terms of the average energy E by
(a) $E_{0}+k_{B} T \ln \frac{E}{E_{0}}$
(b) $E_{0}+2 k_{B} T \ln \frac{E}{E_{0}}$
(c) $E_{0}-k_{B} T \ln \frac{E}{E_{0}}$
(d) $E_{0}-2 k_{B} T \ln \frac{E}{E_{0}}$

Ans. 56: (c)

Q57. A particle in two dimensions is found to trace an orbit $r(\theta)=r_{0} \theta^{2}$. If it is moving under the influence of a central potential $V(r)=c_{1} r^{-a}+c_{2} r^{-b}$, where r_{0}, c_{1} and c_{2} are constants of appropriate dimensions, the values of a and b, respectively, are
(a) 2 and 4
(b) 2 and 3
(c) 3 and 4
(d) 1 and 3

Ans. 57: (b)
Q58. A particle of mass m moves in a potential that is $V=\frac{1}{2} m\left(\omega_{1}^{2} x^{2}+\omega_{2}^{2} y^{2}+\omega_{3}^{2} z^{2}\right)$ in the coordinates of a non-inertial frame F. The frame F is rotating with respect to an inertial frame with an angular velocity $\hat{k} \Omega$, where \hat{k} it is the unit vector along their common z-axis. The motion of the particle is unstable for all angular frequencies satisfying
(a) $\left(\Omega^{2}-\omega_{1}^{2}\right)\left(\Omega^{2}-\omega_{2}^{2}\right)>0$
(b) $\left(\Omega^{2}-\omega_{1}^{2}\right)\left(\Omega^{2}-\omega_{2}^{2}\right)<0$
(c) $\left(\Omega^{2}-\left(\omega_{1}+\omega_{2}\right)^{2}\right)\left(\Omega^{2}-\left|\omega_{1}-\omega_{2}\right|^{2}\right)>0$
(d) $\left(\Omega^{2}-\left(\omega_{1}+\omega_{2}\right)^{2}\right)\left(\Omega^{2}-\left|\omega_{1}-\omega_{2}\right|^{2}\right)<0$

Ans. 58: (b)
Q59. A ${ }^{60} \mathrm{Co}$ nucleus β-decays from its ground state with $J^{P}=5^{+}$to a state of ${ }^{60} \mathrm{Ni}$ with $J^{P}=4^{+}$. From the angular momentum selection rules, the allowed values of the orbital angular momentum L and the total spin S of the electron-antineutrino pair are
(a) $L=0$ and $S=1$
(b) $L=1$ and $S=0$
(c) $L=0$ and $S=0$
(d) $L=1$ and $S=1$

Ans. 59: (a)
Q60. A satellite of mass m orbits around earth in an elliptic trajectory of semi-major axis a. At a radial distance $r=r_{0}$, measured from the centre of the earth, the kinetic energy is equal to half the magnitude of the total energy. If M denotes the mass of the earth and the total energy is $-\frac{G M m}{2 a}$, the value of r_{0} / a is nearest to
(a) 1.33
(b) 1.48
(c) 1.25
(d) 1.67

Ans. 60: (a)
Q61. A particle of mass m in one dimension is in the ground state of a simple harmonic oscillator described by a Hamiltonian $H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}$ in the standard notation. An impulsive force at time to $t=0$ suddenly imparts a momentum $p_{0}=\sqrt{\hbar m \omega}$ to it. The probability that the particle remains in the original ground state is
(a) e^{-2}
(b) $e^{-3 / 2}$
(c) e^{-1}
(d) $e^{-1 / 2}$

Ans. 61: (d)

Q62. A polymer, made up of N monomers, is in thermal equilibrium at temperature T. Each monomer could be of length a or $2 a$. The first contributes zero energy, while the second one contributes \in. The average length (in units of $N a$) of the polymer at temperature $T=\in / k_{B}$ is
(a) $\frac{5+e}{4+e}$
(b) $\frac{4+e}{3+e}$
(c) $\frac{3+e}{2+e}$
(d) $\frac{2+e}{1+e}$

Ans. 62: (d)
Q63. The figure below shows an ideal capacitor consisting of two parallel circular plates of radius R. Points P_{1} and P_{2} are at a transverse distance, $r_{1}>R$ from the line joining the centers of the plates, while points P_{3} and P_{4} are at a transverse distance $r_{2}<R$.

It $B(x)$ denotes the magnitude of the magnetic fields at these points, which of the following holds while the capacitor is charging?
(a) $B\left(P_{1}\right)<B\left(P_{2}\right)$ and $B\left(P_{3}\right)<B\left(P_{4}\right)$
(b) $B\left(P_{1}\right)>B\left(P_{2}\right)$ and $B\left(P_{3}\right)>B\left(P_{4}\right)$
(c) $B\left(P_{1}\right)=B\left(P_{2}\right)$ and $B\left(P_{3}\right)<B\left(P_{4}\right)$
(d) $B\left(P_{1}\right)=B\left(P_{2}\right)$ and $B\left(P_{3}\right)>B\left(P_{4}\right)$

Ans. 63: (c)
Q64. The $|3,0,0\rangle$ state in the standard notation $|n, l, m\rangle$ of the H-atom in the non-relativistic theory decays to the state $|1,0,0\rangle$ via two dipole transition. The transition route and the corresponding probability are
(a) $|3,0,0\rangle \rightarrow|2,1,-1\rangle \rightarrow|1,0,0\rangle$ and $1 / 4$
(b) $|3,0,0\rangle \rightarrow|2,1,1\rangle \rightarrow|1,0,0\rangle$ and $1 / 4$
(c) $|3,0,0\rangle \rightarrow|2,1,0\rangle \rightarrow|1,0,0\rangle$ and $1 / 3$
(d) $|3,0,0\rangle \rightarrow|2,1,0\rangle \rightarrow|1,0,0\rangle$ and $2 / 3$

Ans. 64: (c)
Q65. Balls of ten different colours labeled by $a=1,2, \ldots, 10$ are to be distributed among different coloured boxes. A ball can only go in a box of the same colour, and each box can contain at most one ball. Let n_{a} and N_{a} denote respectively, the numbers of balls and boxes of colour a. Assuming that $N_{a} \gg n_{a} \gg 1$, the total entropy (in units of the Boltzmann constant) can be best approximated by
(a) $\sum_{a}\left(N_{a} \ln N_{a}+n_{a} \ln n_{a}-\left(N_{a}-n_{a}\right) \ln \left(N_{a}-n_{a}\right)\right.$
(b) $\sum_{a}\left(N_{a} \ln N_{a}-n_{a} \ln n_{a}+\left(N_{a}-n_{a}\right) \ln \left(N_{a}-n_{a}\right)\right)$
(c) $\sum_{a}\left(N_{a} \ln N_{a}-n_{a} \ln n_{a}+\left(N_{a}-n_{a}\right) \ln \left(N_{a}-n_{a}\right)\right)$
(d) $\sum_{a}\left(N_{a} \ln N_{a}+n_{a} \ln n_{a}+\left(N_{a}-n_{a}\right) \ln \left(N_{a}-n_{a}\right)\right)$

Ans. 65: (b)
Q66. A linear diatomic molecule consists of two identical small electric dipoles with an equilibrium separation R, which is assumed to be a constant. Each dipole has charges $\pm q$ of mass m separated by r when the molecule is at equilibrium. Each dipole can execute simple harmonic motion of angular frequency ω

Recall that the interaction potential between two dipoles of moments \vec{p}_{1} and \vec{p}_{2}, separated by $\vec{R}_{12}=R_{12} \hat{n}$ is $\left(\vec{p}_{1} \cdot \vec{p}_{2}-3\left(\vec{p}_{1} \cdot \hat{n}\right)\left(\vec{p}_{2} \cdot \hat{n}\right) /\left(4 \pi \in_{0} R_{12}^{3}\right)\right.$.

Assume that $R \gg r$ and let $\Omega^{2}=\frac{q^{2}}{4 \pi \epsilon_{0} m R^{3}}$. The angular frequencies of small oscillations of the diatomic molecule are
(a) $\sqrt{\omega^{2}+\Omega^{2}}$ and $\sqrt{\omega^{2}-\Omega^{2}}$
(b) $\sqrt{\omega^{2}+3 \Omega^{2}}$ and $\sqrt{\omega^{2}-3 \Omega^{2}}$
(c) $\sqrt{\omega^{2}+4 \Omega^{2}}$ and $\sqrt{\omega^{2}-4 \Omega^{2}}$
(d) $\sqrt{\omega^{2}+2 \Omega^{2}}$ and $\sqrt{\omega^{2}-2 \Omega^{2}}$

Ans. 66: (c)
Q67. The Legendre polynomials $P_{n}(x), n=0,1,2, \ldots$, satisfying the orthogonality condition $\int_{-1}^{1} P_{n}(x) p_{m}(x) d x=\frac{2}{2 n+1} \delta_{n m}$ on the interval $[-1,+1]$, may be defined by the Rodrigues formula $\quad P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$. The value of the definite integral $\int_{-1}^{1}\left(4+2 x-3 x^{2}+4 x^{3}\right) P_{3}(x) d x$ is
(a) $3 / 5$
(b) $11 / 15$
(c) $23 / 32$
(d) $16 / 35$

Ans. 67: (d)

Q68. If we use the Fourier transform $\phi(x, y)=\int e^{i k x} \phi_{k}(y) d k$ to solve the partial differential equation

$$
-\frac{\partial^{2} \phi(x, y)}{\partial y^{2}}-\frac{1}{y^{2}} \frac{\partial^{2} \phi(x, y)}{\partial x^{2}}+\frac{m^{2}}{y^{2}} \phi(x, y)=0 \quad \text { in } \quad \text { the } \quad \text { half-plane }
$$

$\{(x, y):-\infty<x<\infty, 0<y<\infty\}$ the Fourier modes $\phi_{k}(y)$ depend on y as y^{α} and y^{β}. The value of α and β are
(a) $\frac{1}{2}+\sqrt{1+4\left(k^{2}+m^{2}\right)}$ and $\frac{1}{2}-\sqrt{1+4\left(k^{2}+m^{2}\right)}$
(b) $1+\sqrt{1+4\left(k^{2}+m^{2}\right)}$ and $1-\sqrt{1+4\left(k^{2}+m^{2}\right)}$
(c) $\frac{1}{2}+\frac{1}{2} \sqrt{1+4\left(k^{2}+m^{2}\right)}$ and $\frac{1}{2}-\frac{1}{2} \sqrt{1+4\left(k^{2}+m^{2}\right)}$
(d) $1+\frac{1}{2} \sqrt{1+4\left(k^{2}+m^{2}\right)}$ and $1-\frac{1}{2} \sqrt{1+4\left(k^{2}+m^{2}\right)}$

Ans. 68: (c)
Q69. In the following circuit the input voltage $V_{\text {in }}$ is such that $\left|V_{\text {in }}\right|<\left|V_{\text {sat }}\right|$ where $V_{\text {sat }}$ is the saturation voltage of the op-amp (Assume that the diode is an ideal one and $R_{L} C$ is much larger than the duration of the measurement.)

For the input voltage as shown in the figure above the output voltage $V_{\text {out }}$ is best represented by
(a)

(b)

(c)

(d)

Ans. 69: (a)
Q70. Potassium chloride forms an FCC lattice, in which K and Cl occupy alternating sites. The density of KCl is $1.98 \mathrm{~g} / \mathrm{cm}^{3}$ and the atomic weights of K and Cl are 39.1 and 35.5, respectively. The angles of incidence (in degrees) for which Bragg peaks will appear when X ray of wavelength 0.4 nm is shone on a KCl crystal are
(a) $18.5,39.4$ and 72.2
(b) 19.5 and 41.9
(c) $12.5,25.7,40.5$ and 60.0
(d) $13.5,27.8,44.5$ and 69.0

Ans. 70: (a)
Q71. Lead is superconducting below 7 K and has a critical magnetic field 800×10^{-4} tesla close to 0 K . At 2 K the critical current that flows through a long lead wire of radius 5 mm is closest to
(a) 1760 A
(b) 1670 A
(c) 1950 A
(d) 1840 A

Ans. 71: (d)
Q72. The Q-value of the α-decay of ${ }^{232} \mathrm{Th}$ to the ground state of ${ }^{228} \mathrm{Ra}$ in 4082 keV . The maximum possible kinetic energy of the α-particle is closest to
(a) 4082 keV
(b) 4050 keV
(c) 4035 keV
(d) 4012 keV

Ans. 72: (d)
Q73. In the reaction $p+n \rightarrow p+K^{+}+X$ mediated by strong interaction, the baryon number B, strangeness S and the third component of isospin I_{3} of the particle X are, respectively
(a) $-1,-1$ and -1
(b) $+1,-1$ and -1
(c) $+1,-2$ and $-\frac{1}{2}$
(d) $-1,-1$ and 0

Ans. 73: (b)
Q74. In an elastic scattering process at an energy E, the phase shifts satisfy $\delta_{0} \approx 30^{\circ}, \delta_{1} \approx 10^{\circ}$, while the other phase shifts are zero. The polar angle at which the differential cross section peaks is closest to
(a) 20°
(b) 10°
(c) 0°
(d) 30°

Ans. 74: (c)

Physics by fiziks

Q75. The unnormalized wave function of a particle in one dimension in an infinite square well with walls at $x=0$ and $x=a$, is $\psi(x)=x(a-x)$. If $\psi(x)$ is expanded as a linear combination of the energy eigenfunctions, $\int_{0}^{a}|\psi(x)|^{2} d x$ is proportional to the infinite series
(You may use $\int_{0}^{a} t \sin t d t=-a \cos a+\sin a$ and $\int_{0}^{a} t^{2} \sin t d t=-2-\left(a^{2}-2\right) \cos a+2 a \sin a$
(a) $\sum_{n=1}^{\infty}(2 n-1)^{-6}$
(b) $\sum_{n=1}^{\infty}(2 n-1)^{-4}$
(c) $\sum_{n=1}^{\infty}(2 n-1)^{-2}$
(d) $\sum_{n=1}^{\infty}(2 n-1)^{-8}$

Ans. 75: (a)

Physics by fiziks

An Institute of NET-JRF, IIT-JAM, GATE, JEST, TIFR \& M.Sc Entrance in Physics \& Physical Sciences

Achievement $\&$ Hall of Fame

Our Toppers in 2020-2022

Akash Naskar
IIT-JAM AIR-5
Jadavpur Univ. Kolkata

Siddhartha Paul IIT-JAM AIR - 22, TIFR AIR - 32 Jadavpur Univ. Kolkata

Keshav Aggarwal IIT-JAM AIR - 32, Delhi Technical Univ.

Vaishali
JRF AIR - 46, GATE AIR - 762 GJUST Haryana

Harsh Chaudhary IIT-JAM AIR-62 NIT, Kurukshetra

Ayush Kumar Shaw JEST AIR-91 Jadavpur Univ. Kolkata

Debosmita NET AIR-10 IIT Delhi

Akshita Agarwal
JRF AIR-24 HNB Garhwal Univ.

Amit Tyagi JRF AIR 35, GATE AIR - 417 CCSU Meerut

Tanu Sharma
IIT-JAM AIR - 50
JEST AIR 85,
MLNC, Delhi Univ.

Devender Kumar GATE AIR-63 Delhi University

Sagar Malik IIT-JAM AIR - 96, JEST AIR-211, NIT, SURAT

Dikhya Joshi
NET AIR-24
Techno India Univ. Kolkata

Apoorva Asthana IIT-JAM AIR - 39, AKTU

Rahul IIT-JAM AIR - 50 S.V.C. Delhi University

Santanu Singh IIT-JAM AIR-67 RKMRC, West Bengal

Abhishek T JRF AIR - 97, GATE AIR - 121 NIT, Kolkata

Vinay Kumar IIT JAM AIR - 26 JMI, Delhi

Aditi Sindhu IIT JAM AIR-41 ARSD, Delhi University

Sapan Kumar Sahoo JEST AIR - 50 NET AIR-124, GATE 478 Central Univ. of South Bihar

Shubhrakanta Panda JRF AIR-72 NIT Rourkela

Anu Sharma Anu Sharma
GATE AIR-100 Punjabi Univ. Patiala

Akshit Joon
Akshit Joon
Kuk, S.D College Panipat

Aditi
Aditi
NET AIR-27, GATE AIR-688 BHU Varanshi

Mani Shankar IIT JAM AIR-42 ARSD, Delhi University

Akash Rawat JRF AIR - 54 SVNIT, NIT

Monika Redhu NET AIR-73
Kurukshetra, Haryana

Seema Maurya JRF AIR-101 Guru Ghasidas Univ.

Akash Bhardwaj IIT-JAM AIR-16 Ramjas College, DU

Satyaki Manna GATE AIR-27 Jadavpur Univ. Kolkata

Ananya Bansal Ananya Bansa
NET AIR-43 Delhi University

Jaydeep Lohia JEST AIR-62 IIT-Bombay

Ayush Garg
JRF AIR-79
Rajasthan Technical Univ.

Ajay Pratap Singh Rana NET AIR - 45, GATE AIR - 640 IISER Thiruvananthpuram

Ekta JEST AIR-84

Jyoti
NET AIR 109, GATE AIR 515 Central Univ. of Punjab

Physics by fiziks

An Institute of NET-JRF, IIT-JAM, GATE, JEST, TIFR \& M.Sc Entrance in Physics \& Physical Sciences

Achievement \& Hall of Fame

Our Toppers in 2015-2019

Pargam Vashishtha M.Sc. from CCS Univ.

Hemanshu Dua
M.Sc. from IISER-Mohali

Manish Singh
JEST AIR-3
B.E. from D.T.U. Delhi

Sadhan Biswas M.Sc. from C.S.J.M. Univ.

Stav Haldar
IIT-JAM AIR-8 B.Sc. from BIT Mesra, Ranchi

Ruby Negi JEST AIR-15, IIT-JAM AIR-251 MLNC, DU

Atul Dubey M.Sc. from D.D.U. Gorakhpur Ph.D. IIT-Delhi

Gaurav Mukherjee IIT-JAM AIR-16
B.Sc. from BIT Mesra, Ranchi

Ekta Kumawat
IIT-JAM AIR-25
B.Sc. from Rajasthan Univ (IIT-D)

Neeru Kundu JRF AIR-33, GATE AIR-36 Kurukshetra University .
 B.Sc. from M.C. College, Bangalor
Int. Ph.D. IISc. Bangalore

Radhika Prasad
IIT-JAM AIR-35
B.Sc. from DU

Deepak Sharma JRF AIR-57, GATE AIR-290 Kurukshetra University.

Banashree Baishya JRF AIR-24, GATE AIR-177 Gauhati University

Vinay Vaibhav
IIT-JAM AIR-36
B.Sc. from Central Univ. of Jharkhand, Int. Ph.D. CM
 JEST AIR-45, IIT-JAM AIR-154 Agra College, DBRA Univ.

Rashid Ali
GATE AIR-9, JRF AIR-17
SSVPG College, Meerut Univ

Abhishek Singh IIT-JAM AIR-9, JEST AIR-117 IIT-JAM AIR-11, JEST AIR-141 MLNC, DU

Kunal Vyas SIMSR, Mumbai

Ankit Dulat IIT-JAM AIR-16, JEST AIR-20 B.Sc. from DU

Manjari Jain GATE AIR-26, JRF AIR-93 M.Sc. from Dr. R.M.L.A Univ.

Mohit Mehta JEST AIR-47 YMCA, Faridabad

Surya Kant Verma
JRF AIR-17 M.Sc. from Rajasthan Univ M.Sc. from A.M.U. Aligarh

Akansha Gupta M.Sc. from Rajasthan Univ.

Priyanka Garg JRF AIR-47 M.Sc. from P.U.

Mukaddar Shaikh Ph.D. IIT-Kharagpur

Dhananjay Singh IIT-JAM AIR-49 IIT Dhanbad

JEST Yash Chugh Yogesh Arya $\begin{array}{cc}\text { JEST AIR-82, IIT-JAM AIR-595 } \\ \text { IGNOU } & \begin{array}{c}\text { JEST AIR-82, GATE AIR-357 } \\ \text { MNIT, Jaipur }\end{array}\end{array}$

Ramesh Kumar JRF AIR-88
G.J.U.S.T, Hisar, Haryana

Amandeep Kaur JRF AIR-94 IIT, Guwahati

Shashank Kumar JRF AIR-99, GATE AIR-89 JEST AIR-107
IIT-Dhanbad

Shinjini Das
GATE AIR - 99
SCC, Calcutta University

Amal Kishor CSIR-NET AIR 100
NIT, NIT, Durgapur

Rajesh Kumar Raul CSIR-NET AIR 100
Annamalai University

